Типы USB: гид по различным стандартам. Интерфейс USB: описание и основы устройств сопряжения Какую функцию выполняет хост в интерфейсе usb

Сегодняшняя статья будет посвящена, как уже видно из названия, обсуждению основ интерфейса USB . Рассмотрим основные понятия, структуру интерфейса, разберемся, как происходит передача данных, а в ближайшем будущем реализуем все это на практике 😉 Короче, приступаем!

Существует ряд различных спецификаций USB . Началось все с USB 1.0 и USB 1.1 , затем интерфейс эволюционировал в USB 2.0 , относительно недавно появилась окончательная спецификация USB 3.0 . Но на данный момент наиболее распространенной является реализация USB 2. 0.

Ну и для начала основные моменты и характеристики. USB 2.0 поддерживает три режима работы:

  • High Speed – до 480 Мб/с
  • Full Speed – до 12 Мб/с
  • Low Speed – до 1.5 Мб/с

Командует на шине USB хост (например, ПК), к которому можно подключить до 127 различных устройств. Если этого мало, то нужно добавить еще один хост. Причем немаловажно, что устройство не может само послать/принять данные хосту/от хоста, необходимо, чтобы хост сам обратился к устройству.

Почти во всех статьях про USB , которые я видел используется термин “конечная точка “, но о том, что это такое обычно написано довольно туманно. Так вот, конечная точка – это часть устройства USB , имеющая свой уникальный идентификатор. Каждое устройство USB может иметь несколько конечных точек. По большому счету – конечная точка – это всего лишь область памяти USB устройства, в которой могут храниться какие-либо данные (буфер данных). И в итоге мы получаем вот что – каждое устройство имеет свой уникальный адрес на шине USB , и при этом каждая конечная точка этого устройства имеет свой номер. Вот так вот)

Давайте немного отвлечемся и поговорим о “железной части” интерфейса.

Существуют два типа коннекторов – Type A и Type B.

Как уже понятно из рисунка Type A всегда обращен к хосту. Именно такие разъемы мы видим на компьютерах и ноутбуках. Коннекторы Type B всегда относятся к подключаемым USB-устройствам. Кабель USB состоит из 4 проводов разных цветов. Ну, собственно, красный – это питание (+5 В), черный – земля, белый и зеленый предназначены для передачи данных.

Помимо изображенных на рисунке, существуют также другие варианты исполнения USB-коннекторов, например, mini-USB и другие, ну это вы и так знаете 😉

Наверно стоит немного коснуться способа передачи данных, но углубляться в это не будем) Итак, при передаче данных по шине USB используется принцип кодирования NRZI (без возврата к нулю с инверсией). Для передачи логической “1” необходимо повысить уровень линии D+ выше +2.8 В, а уровень линии D- надо понизить ниже +0.3 В. Для передачи нуля ситуация противоположная – (D- > 2.8 В) и (D+ < 0.3 В).

Отдельно стоит обсудить питание устройств USB . И тут также возможно несколько вариантов.

Во-первых устройства могут питаться от шины, тогда их можно разделить на два класса:

  • Low-power
  • High-power

Разница тут заключается в том, что low-power устройства не могут потреблять больше, чем 100 мА . А устройства high-power должны потреблять не более 100 мА лишь на этапе конфигурации. После того, как они сконфигурированы хостом их потребление может составлять до 500 мА .

Кроме того, устройства могут иметь свой собственный источник питания. В этом случае они могут получать до 100 мА от шины, а все остальное забирать у своего источника)

С этим вроде бы все, давайте потихоньку переходить к структуре передаваемых данных. Все-таки это представляет для нас наибольший интерес 😉

Вся информация передается кадрами , которые отправляются через равные промежутки времени. В свою очередь каждый кадр состоит из транзакций . Вот, пожалуй, так будет нагляднее:

Каждый кадр включает в себя пакет , затем следуют транзакции для разных конечных точек, ну и завершается все это пакетом EOF (End Of Frame). Если говорить совсем точно, то EOF – это не совсем пакет в привычном понимании этого слова – это интервал времени, в течение которого обмен данными запрещен.

Каждая транзакция имеет следующий вид:

Первый пакет (его называют Token пакет ) содержит в себе информацию об адресе устройства USB , а также о номере конечной точки, которой предназначена эта транзакция. Кроме того, в этом пакете хранится информация о типе транзакции (какие бывают типы мы еще обсудим, но чуть позже =)). – с ним все понятно, это данные, которые передают хост, либо конечная точка (зависит от типа транзакции). Последний пакет – Status – предназначен для проверки успешности получения данных.

Уже очень много раз прозвучало слово “пакет” применительно к интерфейсу USB , так что пора разобраться что он из себя представляет. Начнем с пакета Token :

Пакеты Token бывают трех типов:

  • Setup

Вот к чему я это рассказал..) В зависимости от типа пакета значение поля PID в Token пакете может принимать следующие значения:

  • Token пакет типа OUT – PID = 0001
  • Token пакет типа IN – PID = 1001
  • Token пакет типа SETUP – PID = 1101
  • Token пакет типа SOF – PID = 0101

Переходим к следующей составной части пакета Token – поля Address и Endpoint – в них содержатся адрес USB устройства и номер конечной точки , которой предназначена транзакция .

Ну и поле CRC – это контрольная сумма, с этим понятно.

Тут есть еще один важный момент. PID включает в себя 4 бита, но при передаче они дополняются еще 4-мя битами, которые получаются путем инвертирования первых 4-ых бит.

Итак, на очереди – то есть пакет данных.

Тут все в принципе так же, как и в пакете Token , только вместо адреса устройства и номера конечной точки здесь у нас передаваемые данные.

Осталось нам рассмотреть Status пакеты и пакеты SOF :

Тут PID может принимать всего лишь два значения:

  • Пакет принят корректно – PID = 0010
  • Ошибка при приеме пакета – PID = 1010

И, наконец, пакеты:

Здесь видим новое поле Frame – оно содержит в себе номер передаваемого кадра.

Давайте в качестве примера рассмотрим процесс записи данных в USB-устройство. То есть рассмотрим пример структуры кадра записи.

Кадр, как вы помните состоит из транзакций и имеет следующий вид:

Что представляют из себя все эти транзакции? Сейчас разберемся! Транзакция SETUP :

Транзакция OUT :

Аналогично при чтении данных из USB-устройства кадр выглядит так:

Транзакцию SETUP мы уже видели, посмотрим на транзакцию IN 😉

Как видите, все эти транзакции имеют такую структуру, как мы обсуждали выше)

В общем, думаю достаточно на сегодня 😉 Довольно-таки длинная статья получилась, надеюсь в ближайшее время попробуем реализовать интерфейс USB на практике!

В конце 2008 года. Как и можно было ожидать, новый стандарт увеличил пропускную способность, хотя прирост не такой значительный, как 40-кратное увеличение скорости при переходе от USB 1.1 на USB 2.0. В любом случае, 10-кратное повышение пропускной способности можно приветствовать. USB 3.0 поддерживает максимальную скорость передачи 5 Гбит/с. Пропускная способность почти в два раза превышает современный стандарт Serial ATA (3 Гбит/с с учётом передачи информации избыточности).

Логотип USB 3.0

Каждый энтузиаст подтвердит, что интерфейс USB 2.0 является основным «узким местом» современных компьютеров и ноутбуков, поскольку его пиковая «чистая» пропускная способность составляет от 30 до 35 Мбайт/с. Но у современных 3,5″жёстких дисков для настольных ПК скорость передачи уже превысила 100 Мбайт/с (появляются и 2,5″ модели для ноутбуков, приближающиеся к данному уровню). Скоростные твёрдотельные накопители успешно превзошли порог 200 Мбайт/с. А 5 Гбит/с (или 5120 Мбит/с) соответствует 640 Мбайт/с.

Мы не думаем, что в обозримом будущем жёсткие диски приблизятся к уровню 600 Мбайт/с, но следующие поколения твёрдотельных накопителей могут превысить это число уже через несколько лет. Увеличение пропускной способности становится всё более важным, поскольку количество информации увеличивается, соответственно, растёт и время её резервирования. Чем быстрее работает хранилище, тем меньше будет время резервирования, тем проще будет сделать «окна» в расписании резервирования.

Таблица сравнения скоростных характеристик USB 1.0 – 3.0

Цифровые видеокамеры сегодня могут записывать и хранить гигабайты видеоданных. Доля HD-видеокамер увеличивается, а им требуются более ёмкие и быстрые хранилища для записи большого количества данных. Если использовать USB 2.0, то на передачу нескольких десятков гигабайт видеоданных на компьютер для монтажа потребуется значительное время. USB Implementers Forum считает, что пропускная способность останется принципиально важной, и USB 3.0 будет достаточно для всех потребительских устройств на протяжении ближайших пяти лет.

Кодирование 8/10 бит

Чтобы гарантировать надёжную передачу данных интерфейс USB 3.0 использует кодирование 8/10 бит, знакомое нам, например, по Serial ATA. Один байт (8 бит) передаётся с помощью 10-битного кодирования, что улучшает надёжность передачи в ущерб пропускной способности. Поэтому переход с битов на байты осуществляется с соотношением 10:1 вместо 8:1.

Сравнение пропускной способности USB 1.x – 3.0 и конкурентов

Режимы энергосбережения

Конечно, основной целью интерфейса USB 3.0 является повышение доступной пропускной способности , однако новый стандарт эффективно оптимизирует энергопотребление . Интерфейс USB 2.0 постоянно опрашивает доступность устройств, на что расходуется энергия. Напротив, у USB 3.0 есть четыре состояния подключения, названные U0-U3. Состояние подключения U0 соответствует активной передаче данных, а U3 погружает устройство в «сон».

Если подключение бездействует, то в состоянии U1 будут отключены возможности приёма и передачи данных. Состояние U2 идёт ещё на шаг дальше, отключая внутренние тактовые импульсы. Соответственно, подключённые устройства могут переходить в состояние U1 сразу же после завершения передачи данных, что, как предполагается, даст ощутимые преимущества по энергопотреблению, если сравнивать с USB 2.0.

Больший ток

Кроме разных состояний энергопотребления стандарт USB 3.0 отличается от USB 2.0 и более высоким поддерживаемым током . Если USB 2.0 предусматривал порог тока 500 мА, то в случае нового стандарта ограничение было сдвинуто до планки 900 мА. Ток при инициации соединения был увеличен с уровня 100 мА у USB 2.0 до 150 мА у USB 3.0. Оба параметра весьма важны для портативных жёстких дисков, которые обычно требуют чуть большие токи. Раньше проблему удавалось решить с помощью дополнительной вилки USB, получая питание от двух портов, но используя только один для передачи данных, пусть даже это нарушало спецификации USB 2.0.

Новые кабели, разъёмы, цветовое кодирование

Стандарт USB 3.0 обратно совместим с USB 2.0 , то есть вилки кажутся такими же, как и обычные вилки типа A. Контакты USB 2.0 остались на прежнем месте, но в глубине разъёма теперь располагаются пять новых контактов. Это означает, что вам нужно полностью вставлять вилку USB 3.0 в порт USB 3.0, чтобы удостовериться в режиме работы USB 3.0, для которого требуются дополнительные контакты. Иначе вы получите скорость USB 2.0. USB Implementers Forum рекомендует производителям использовать цветовое кодирование Pantone 300C на внутренней части разъёма.

Ситуация получилась схожей и для USB-вилки типа B, хотя различия визуально более заметны. Вилку USB 3.0 можно определить по пяти дополнительным контактам .

USB 3.0 не использует волоконную оптику , поскольку она слишком дорога для массового рынка. Поэтому перед нами старый добрый медный кабель. Однако теперь у него будет девять, а не четыре провода. Передача данных осуществляется по четырём из пяти дополнительных проводов в дифференциальном режиме (SDP–Shielded Differential Pair). Одна пара проводов отвечает за приём информации, другая – за передачу. Принцип работы похож на Serial ATA, при этом устройства получают полную пропускную способность в обоих направлениях. Пятый провод – «земля».

На самом деле новый стандарт USB 3.1 и разъем Type-C должны унять безобразие и навести порядок. На все про все - один-единственный кабель: для передачи данных, аудио-, видеосигнала и подачи питания. Симметричный разъем Type-C - настоящее счастье для запутавшихся в проводах пользователей мобильных устройств. А стандарт USB 3.1 позволяет, например, воспроизводить видео с планшета на телевизоре в то время, пока мобильное устройство заряжается.

Уже только переход на новые спецификации готовит производителям дополнительные трудности, из-за чего продавцы и покупатели тотчас же приходят в уныние. Упрекнуть компании в отсутствии заинтересованности нельзя: после выхода на рынок MacBook Pro (2015) многие производители представили продукты с поддержкой нового стандарта USB 3.1 с разъемом Type-C, среди них такие устройства, как материнские платы, мониторы, внешние накопители и смартфоны. Так, разъемом USB Type-C оборудован LG G6, а еще HTC 10 и Samsung Galaxy S8, который подключается к док-станции через универсальный разъем, превращаясь в полноценный персональный компьютер. Но новая форма не всегда означает новые функции: так, Type-C в версии Huawei не поддерживает USB 3.1, а для быстрой зарядки вообще использует собственную технологию.

Старые устройства - помеха для новых стандартов

Многообразие разъемов
Многие USB-устройства, как и прежде, выпускаются с одним из старых разъемов. Type-C должен заменить их все

Технические прорывы всегда занимают очень много времени, если есть большой фонд старой техники. Клавиатуры, мыши, внешние диски, веб-камеры, цифровые фотоаппараты, USB-флешки — миллионы этих устройств по-прежнему требуют поддержки старых версий USB. Проблему можно было бы временно решить, используя универсальные переходники, но ведь все еще выпускаются совершенно новые устройства со старыми USB-портами.

А поскольку обычному USB-кабелю не так-то просто отличить хост от клиентского устройства, ему по сей день требуется целых два разных типа разъемов. Поэтому внешние жесткие диски часто выпускаются с разъемами Mini-A, а принтеры — c типичными четырехугольными разъемами Type-B. Рано или поздно USB Type-C должен заменить не только эти разъемы - при помощи кабеля можно было бы, например, без проблем подключить периферийные устройства к ПК. Более того, Type-C может отправить в небытие DisplayPort, HDMI и даже гнезда TRS.

Не путать: Type-C - это не USB 3.1


«Говорящие» логотипы
Логотипы должны отражать, какие функции обеспечивает разъем USB. К сожалению, их используют не все производители

Поскольку консорциум USB одновременно с разъемом Type-C утвердил две другие спецификации, часто возникает некоторая путаница в понятиях. Во-первых, мы имеем новый разъем Type-C с зеркальным расположением контактов 2×12, благодаря чему порт нечувствителен к ориентации штекера – а это значит, что о проблеме «как воткнуть штекер USB Type-A с первого раза» можно будет совсем скоро забыть.
Во-вторых, вместе с новым разъемом введен новый стандарт USB 3.1, повышающий потолок скорости передачи данных до 10 Гбит/с (брутто).

Далее, электропитание USB Power Delivery (USB-PD) представлено в новой, второй ревизии: она подразумевает ускорение зарядки подключенных устройств путем увеличения мощности (20 В, 5 А вместо прежних 5 В, 0,9 А). Другими словами, несмотря на то, что USB Type-C, USB 3.1 и USB Power Delivery часто отождествляются, они не являются равнозначными терминами или синонимами. Так, существует, например, интерфейс USB 2.0 в формате Type-C или порт USB 3.1 без поддержки быстрой зарядки Power Delivery.

Но это еще не все. Совсем снимать вину за беспорядок с консорциума нельзя, поскольку от использования обычной номенклатуры он ушел: с появлением USB 3.1 прекратил существование USB 3.0 в том смысле, что эта прежняя версия теперь классифицируется как USB 3.1 Gen 1, а нововведенная технология называется USB 3.1 Gen 2. Но множество кабелей и устройств USB продаются под названием USB 3.1 — без указаний, какое именно поколение имеется в виду.

Консорциум USB, правда, разработал систему логотипов для обозначения разъемов USB Type-C, чтобы можно было отличить, например, штекер Type-C с поддержкой USB 3.1 Gen 1 от штекера с поддержкой USB 3.1 Gen 2 или вообще старого USB 2.0, но для начала логотипы нужно внимательно изучить. Нередко приходится заглядывать в руководство, чтобы понять, какая версия используется — если, конечно, подробная документация доступна. Неудивительно, что многие производители продолжают использовать прежнее название USB 3.0.


Предельные величины USB-версий
С USB 3.1 Gen 2 скорость передачи данных повышается вдвое и увеличивается мощность тока для быстрой зарядки

Ко всему этому многообразию следует добавить интерфейс Thunderbolt 3, разрабатываемый в первую очередь Intel и Apple. Thunderbolt с третьей версии тоже использует разъем Type-C, но не совсем совместим с USB 3.1. С использованием активных кабелей Thunderbolt 3 пропускная способность достигает 40 Гбит/с (брутто) — в четыре раза больше, чем у USB 3.1. Это не только обеспечивает очень высокую скорость передачи данных, но и позволит передавать по DisplayPort несколько видеопотоков с контентом 4K и даже использовать внешние видеокарты. Сложные технологии требуют использования активной электроники в кабелях. USB-устройства можно подключать к порту Thunderbolt 3, но ни в коем случае не наоборот.

Трудный выбор кабелей

Неразбериха не останавливается одними стандартами и версиями. Если раньше можно было ограничить выбор одним USB-кабелем с нужными типами разъемов, с USB 3.1 и Type-C это будет не так-то просто. Здесь, как и в случае со стандартами и версиями, в настоящее время образовался огромный недостаток информации: далеко не все кабели Type-C умеют передавать данные, видео и подавать питание. Во многих случаях для пользователей непонятно, поддерживает ли кабель Type-C быструю зарядку Power Delivery или альтернативный режим для передачи видео, потому что логотипов и маркировки, как правило, попросту нет.


Премиумные материнские платы
В настоящее время USB 3.1 Gen 2 поддерживают только отдельные материнские платы премиум сегмента. Среди них - Asus Rampage V 10, оснащенная двумя портами Type-A и двумя Type-C, стоит она около 38 500 рублей

Зачастую невозможно определить, поддерживает ли кабель USB 3.1 или всего лишь USB 2.0. На сайте Amazon очень часто встречаются отзывы от расстроенных клиентов, которые после покупки обнаружили, что приобретенный кабель не поддерживает технологию быстрой зарядки их смартфонов. Из тяжелого положения совсем не помогает выйти даже обозначение некоторыми производителями, например, Aukey, кабеля USB 3.1 Gen 1 с концами Type-C и Type-A как «кабель с Type-C на USB 3.0» — это в корне неверно.

Если вы решили обзавестись устройством с разъемом Type-C, непременно убедитесь в том, что в комплекте поставки есть кабель — только в таком случае все требования наверняка будут удовлетворены. Поставщик оборудования для компьютерной техники Hama, например, предлагает несколько кабелей Type-C с подробными характеристиками, но цены начинаются от 1000 рублей. Еще дороже обойдется покупка кабеля Thunderbolt 3 — нужно будет выложить около 2000 рублей. Зато тут предусмотрены все функции. Если эта цена слишком высока, то волей-неволей придется порыться в описаниях продуктов и отзывах клиентов о них в поисках нужного кабеля.

USB-C: симметричный штекер

Передача данных, питание и диалог между устройствами - каждый из 24 пинов штекера Type-C выполняет отдельную функцию. Легко заметить, что их расположение симметрично.

Дисплеи, ноутбуки и адаптеры

Для передачи видео в одном из альтернативных режимов (DisplayPort или HDMI), то есть, например, с ноутбука на монитор, тоже следует обратить внимание на технические требования. В настоящее время на рынке есть несколько мониторов с разъемом USB Type-C от LG, Eizo, Acer и HP (например, Envy 27, около 40 000 рублей). Для вывода видео практически повсеместно используется стандарт DisplayPort, который и вправду работает вполне надежно. Но если говорить о быстрой зарядке, которая предъявляет особые требования блоку питания монитора, то тут у покупателей во многих случаях возникают вопросы.


Видео в альтернативном режиме
Передачу видео на монитор разъем USB-C, например, как у LG 27UD88 (около 38 000 рублей), как правило, обеспечивает надежно, но быстрая зарядка Power Delivery ему дается не всегда

Впрочем, подача питания с монитора на ноутбук не всегда обязательна. Портативный 15-дюймовый монитор Asus MB169C+ (около 15 000 рублей) получает питающее напряжение от ноутбука через полноценно используемый разъем Type-C.
Так или иначе, в настоящее время чаще случается так, что ноутбук с разъемом USB Type-C подключается к монитору через порт HDMI или DisplayPort. В таких случаях требуется переходник, преобразующий видеосигнал и передающий его на монитор с использованием нужного стандарта. Такие аксессуары можно купить примерно от 1000 рублей. По сравнению с другими кабелями выбирать переходники довольно просто, потому что их задача заключается только в преобразовании видеосигнала без учета других особенностей USB 3.1.

Для тех, кто интересуется ноутбуком или планшетом с разъемом Type-C, выбор в настоящее время ограничен, но зато замечателен. Кроме MacBook (12 дюймов) есть гибриды Acer Aspire Switch 10 V (около 25 000 рублей) и Asus T100HA (около 18 000 рублей). А юный хромбук Google Pixel оснащен целыми двумя портами Type-C (правда, только стандарта USB 3.1 Gen 1), но в России он пока не поступал в официальную продажу.


Старая документация
Несмотря на то, что Acer Aspire Switch 10 V снабжен только одним портом Type-C, в руководстве указаны старые типы USB-разъемов

Наверное, вряд ли какой-нибудь пользователь осмелится разом перевести все свои периферийные устройства на Type-C, поэтому большинству владельцев ноутбуков для начала потребуется адаптер USB 3.1 для передачи данных и видеосигнала по кабелю USB Type-A, HDMI или DisplayPort. Цены на рекомендуемые гибкие модели начинаются от 2500 рублей, как, например, на Icy Box IB-DK4031. Club 3D SenseVision стоит дороже — около 6500 рублей — зато он включает HDMI, DVI, USB 3.0 Type-A, 4 разъема USB 2.0, быструю зарядку USB, а также гнезда для подключения микрофона и наушников.

Менее богат в настоящий момент выбор для десктопов: традиционно производители материнских плат внедряют новые стандарты в премиум-модели. Единственная материнская плата с четырьмя портами USB 3.1 Gen 2 (по два Type-A и Type-C) — это Asus Rampage V 10, которая стоит около 38 500 рублей. По крайней мере, указание на быструю передачу 10 Гбит/с находится в том числе на панели интерфейсных разъемов. Одним из вариантов USB 3.1 из нижней ценовой категории десктопов является MSI X99A SLI (LGA 2011-3) с одним портом Type-A и одним Type-C примерно за 15 000 рублей.

Универсальный адаптер

Переход на компьютеры с разъемом Type-C потребует для периферии наличия переходника с различными типами портов.

> Club 3D SenseVision (около 6500 рублей)
Адаптер относительно дорогой, но оснащен большим количеством портов, среди которых - HDMI, DVI, гнезда для микрофона и наушников, а также четыре порта USB 2.0 и разъем для быстрой зарядки (USB 3.1 Gen 1)

> Icy Box IB-DK4031 (около 2500 рублей)
Более простой вариант адаптера с разъемом Type-A (USB 3.1 Gen 1), HDMI,
а также разъемом Type-C с Power Delivery для быстрой зарядки внешних устройств.

Преимущества внешней памяти благодаря USB 3.1


Быстрая память
USB 3.1 Gen 2 обеспечивает многим внешним твердотельным накопителям, например, Freecom mSSD MAXX, значительный рывок в скорости

От высоких скоростей передачи данных по USB 3.1 Gen 2 выигрывают, конечно же, сетевые хранилища с конфигурацией RAID и внешние накопители, в первую очередь флеш-память — твердотельные накопители и USB-флешки. Но для последних в настоящее время доступность USB 3.1 Gen 2 сводится к нулю. Предлагаемые флешки SanDisk, Kingston и Corsair, позиционируемые как USB 3.1, передают данные со скоростью не более 5 Гбит/с, то есть относятся к первому поколению. Тем не менее, для большей части флешек сейчас этого должно хватить.

Что же касается внешних твердотельных накопителей, то тут производители Freecom (mSSD MAXX, около 8000 рублей) и Adata (SE730, около 9500 рублей) предлагают диски с USB 3.1 уже второго поколения. Первые практические тестирования показывают, что высокоскоростной интерфейс действительно обеспечивает ощутимо более высокие скорости передачи данных. Terramaster предлагает корпус для сетевого хранилища D2-310 с двумя отсеками (около 10 000 рублей) с поддержкой USB 3.1 Gen 2, на котором высокоскоростные диски SATA в RAID-массиве тоже должны произвести хорошее впечатление.


Музыка по USB-C
Счет гнезду для наушников на смартфоне открыт: в скором времени в стандартной комплектации появится переходник Type-C на TRS

Следует отдельно отметить, что производители памяти лучше всех остальных справляются с задачей указывать версии и стандарты и реже всего бросают своих клиентов на полпути. Остальные же производители должны в срочном порядке дополнить документацию и должным образом реализовывать стандарты.

Переход с одного поколения технологий на другое всегда был длительным и часто запутанным процессом, но со времен VHS и Betamax такой сумятицы, как сейчас, еще не было. Когда-нибудь конфигурация USB 3.1 / Type-C и вправду упростит всем жизнь - особенно пользователям, ну а пока предстоит преодолеть немало трудностей.

ФОТО: CHIP Studios; Freecom; Stouch; Club 3D; Raidsonic; Acer; LG; Asus; Sabrina Raschpichler

Альтернативные способы подключения, такие как разъёмы USB, широко применяются для подключения современных устройств.

Это название довольно распространённое и с английского языка переводиться так – «универсальная последовательная шина».

Все USB разъёмы представлены тремя версиями.

Характерные особенности основных трёх версий USB разъёмов

Первая версия USB разъёмов (1.1). Её Характерной особенностью является очень маленькая скорость, при которой вся информация передаётся с большой задержкой.

Скорость передачи составляет 12 Мбит/с. Его основное предназначение – это применение для взаимосвязи устройств.

Вторая версия USB разъёмов (2.0).

Характеризуется скоростью передачи данных 480 Мбит/с. Это соответствует скорости в 48 Мбайт/с.

Основная часть всех современных технических приборов и устройств приспособлены к применению именно этой версии. Она наиболее популярна и известна, а поэтому пользуется спросом на рынке электротоваров.
Правда по причине множества факторов настоящая скорость этого стандарта не бывает больше 30 – 33 Мбайт/с.

Так как последние выпуски жёстких дисков, к примеру, SSD, разработаны для чтения информации со значительно большей скоростью (почти в 4 раза), то эта версия стандарта задерживает действие новых моделей накопителей.

В этом виден основной недостаток свойств разъёмов USB 2.0. Но несмотря на это определённые устройства вполне совместимы с этой версией разъёмов: мышки, клавиатуры, сканеры и принтеры.

Третья версия USB (3.0).

Данная версия характеризуется скоростью передачи информации – 5 Гбит/с – что считается достаточно высоким показателем.

Такая скорость соответствует 500 Мбайт/с.

Это намного выше показателей скорости винчестеров последнего поколения (150 – 170 Мбайт/с).

Разъёмы USB 3.0 для их распознавания специально маркируются синим цветом.

Совместимость интерфейсов

Если рассмотреть вопрос совместимости устройств, которые имеют представленные выше разъёмы, то можно констатировать, что первая и вторая версии разъёмов USB могут быть заменимы между собою.

Определённое устройство, которое имеет соединение второй версии USB, а принимает соединение первой версии, может показать сообщение, в котором будет говориться о его возможности работать быстрее.

Потому что данная модель компьютера рассчитана на приём информации через вторую версию, скорость которой выше, чем первой.

То есть не будет использован весь потенциал скорости данного устройства.
Современные устройства, которые имеют разъёмы второй версии, могут быть подключены к третьей версии USB, а использование третьей версии относительно второй исключается, кроме USB 3.0 типа А.

Дополнительные контакты создают условия для увеличения скорости интерфейса – это есть особенностью последних моделей кабелей и устройств, имеющих разъёмы третьей версии USB.

Питание USB разъёмов

Мощность, на которую рассчитаны подключаемые устройства с разъёмами USB, составляет 2,5 Вт, а также 4,5 Вт (для третьей версии).

Исходя из этого, разъёмам USB всех версий необходимо напряжение 5 В. Ток до 0,5 А, а для третьей версии – 0,9 А .

Контакты USB 3.0.

Такие устройства, как плееры, карты памяти, телефоны, флэшки (то есть устройства с маленькой мощностью) свободно могут подключаться с помощью таких разъёмов.

А технические средства, имеющие большую мощность, подключаются к внешней электрической сети.

Типы разъемов

Вторая и третья версии разъёмов различают по размерам: Mini USB (маленькие размеры), Micro USB (ещё меньшие размеры); а также по типам: А, В.

USB разъём 2.0 типа A.

Надежный разъем основной характеристикой которого является способность выдерживать не одно подключение, при этом, не теряя своей целостности.

Сечение разъёма имеет прямоугольную форму, что создаёт дополнительную защиту при подключении.

Его недостаток – это большой размер, а все современные устройства отличаются портативностью что и повлияло на разработку и выпуск разъёмов аналогичного типа, но меньшего размера.

USB 2.0 типа А был представлен в девяностых годах и на данный момент еще является наиболее используемым.

Его имеют значительная часть маломощных устройств: клавиатура, мышка, флэшка и другие.

USB разъём версии 2.0 типа В.

В основном его применение находим в стационарных устройствах имеющие большие размеры. К ним относятся сканеры, принтеры, реже ADSL-модемы.

Редко, но все же бывает, что кабеля такого типа продаются отдельно от самой техники, потому что они не входят в состав комплекта технического устройства. Поэтому проверяйте комплектацию устройств.

Разъёмы данного типа не такие востребованные, как разъёмы типа А.

Квадратная и трапециевидная форма присуща всем разъёмам типа В.

К ним относятся и Mini и Micro.

Особенность сечения разъёмов типа «В» заключается в их квадратной форме, что отличает его от других типов.

Разъёмы Mini USB второй версии типа B.

Название разъёма такого типа говорит о том, что оно имеет очень маленькие размеры. И это не удивительно, потому что современный рынок всё больше предлагает миниатюрные товары.

Благодаря использованию персональных винчестеров, кардридеров, плееров и других маленьких устройств, разъёмы USB Mini, относящиеся к типу B, получили большую популярность.

Следует отметить ненадёжность таких разъёмов. При частом использовании он расшатывается.

А вот применение моделей разъёмов USB Mini типа A крайне ограничено.

Разъёмы Мicro USB 2.0 типа B.

Модели разъёмов Micro USB являются более совершенными относительно моделей Mini USB.

Данный тип разъёмов отличается невероятно маленькими размерами.

В отличие от предыдущих представленных типов мини, эти разъёмы очень надёжны своими креплениями и фиксацией подключения.

Разъём Мicro USB 2.0 типа «B» был признан по своим качествам единым для всеобщего применения для зарядки всех портативных устройств.

Что произойдёт со временем, когда все производители станут выпускать технику, приспособленную именно к таким разъёмам. Наверное, осталось не долго чтобы это увидеть.

Но такое решение уже было принято в 2011 году всеми современными производителями, хотя разъём Мicro USB 2.0 типа «B» еще присутствует не на всех устройствах.

Разъёмы USB третьей версии типа A.

Разъёмы USB 3.0 имеют большую скорость для передачи информации за счёт дополнительных контактов.

При таких изменениях всё же сохранена совместимость обратной связи. Его применение налажено в компьютерах и ноутбуках последнего поколения.

Разъёмы USB третьей версии типа B.

Третья версия разъёмов USB типа «B» не подходят к подключению разъёмов USB второй версии.

Его применяют в работе периферийных устройств со средней и крупной производительностью.

Micro USB 3.0.

Современные внешние накопители, имеющие высокую скорость, а также диски типа SSD, в основном, все оснащены таким разъёмом, который характеризуется высокой скоростью обмена информацией.

Всё более занимает лидирующее положение благодаря тому, что имеет очень качественные соединения.

Разъём удобный в использовании из-за своей компактности. Его предшественником считается разъем вида Micro USB.

Распиновка разъемов USB .

Основные отличия разъёмов Micro и Mini USB

На первый взгляд данные разъёмы очень похожи. И действительно, большая часть характерных особенностей основных параметров данных видов совпадает.

Но при внимательном осмотре можно заметить такие отличия:

  1. Разъём USB Mini имеет большие размеры относительно разъёма USB Micro.
  2. Наличие защёлок специального предназначения на задней стороне разъёмов USB Micro.

Многие пользователи уже убедились, что удобнее всего иметь у себя в наличии не один вид разъёмов, а несколько, потому что различные виды устройств имеют разные виды подключения разъёмов USB.

К единому стандарту производители устройств к сожалению, еще не пришли, и скорее всего не придут еще долго, ведь каждый тип разъема USB имеет свое назначение.

Реферат

Интерфейс USB

Введение

аппаратный кабель интерфейс

Увеличение числа устройств, подключаемых к персональному компьютеру, и, соответственно, развитие внешних интерфейсов привело к противоречивой ситуации: с одной стороны, компьютер должен иметь множество различных разъемов, а с другой - большая часть из них не используется. Такая ситуация определяется историческим развитием интерфейсов ПК - каждый интерфейс имел свой специализированный разъем. Более того, к одному порту в большинстве случаев можно подключить только одно устройство. Кроме того, проблема многочисленности разнообразных подключений включает в себя и следующие аспекты:

практически для каждого из устройств необходимо выделение аппаратного прерывания (IRQ);

большая часть устройств требует наличия внешнего блока питания;

каждое устройство имеет свой протокол обмена, многократно увеличивая необходимее количество драйверов;

конфигурирование огромного числа устройств, многие из которых не поддерживают спецификации Plug and Play, достаточно сложно для обычного пользователя и др.

Естественно, что производители аппаратного обеспечения задумались о создании единого и универсального интерфейса. И в начале 1996 года была опубликована версия 1.0 нового интерфейса USB (Universal Serial Bus - универсальная последовательная шина).

Последовательные шины позволяют объединять множество устройств, используя всего 1-2 пары проводов. Функциональные возможности этих шин гораздо шире, чем у традиционных интерфейсов локальных сетей.

Шина USB ориентирована именно на периферийные устройства, подключаемые к персональному компьютеру. Устройства могут подключаться к USB четырехпроходным кабелем без выключения компьютера. Изохронные передачи USB позволяют передавать цифровые аудиосигналы, а шина USB 2.0 способна нести и видеоданные. Все передачи управляются централизованно, и ПК является необходимым управляющим узлом, находящимся в корне древовидной структуры шины. Спецификация USB подразумевает прозрачное подключение устройств к шине и позволяет иметь несколько устройств на одном порту. Адаптер USB входит в состав всех современных чипсетов системных плат.

1. История USB

Интерфейс USB появился по компьютерным меркам довольно давно. Спецификация версии 1.1 на этот интерфейс была опубликована в начале 1996 года, большинство устройств поддерживает версию 1.1, которая вышла осенью 1998 года, - в ней были устранены обнаруженные проблемы первой редакции. Весной 2000 года опубликована спецификация USB 2.0, в которой предусмотрено 40-кратное повышение пропускной способности шины. В конце 2008 года USB Implementers Forum финализировал спецификации стандарта USB 3.0. Новый стандарт увеличил пропускную способность еще в 10 раз (пиковая производительность - 5 Гбит/с).

Первоначально (в версиях 1.0 и 1.1) шина обеспечивала две скорости передачи информации: полная скорость FS (full speed) - 12 Мбит/с и низкая скорость LS (Low Speed) - 1,5 Мбит/с. В версии 2.0 определена еще и высокая скорость HS (High Speed) - 480 Мбит/с, которая позволяет существенно расширить круг устройств, подключаемых к шине. В одной и той же системе могут присутствовать и одновременно работать устройства со всеми тремя скоростями. При этом предусматривается обратная совместимость устройств USB 2.0 с USB 1.x, т.е. «старые» USB 1.x устройства будут работать с USB 2.0 контроллерами, правда на скорости 12 Мбит/с. Скорость 480 Мбит/с достигается только при одновременном использовании USB 2.0 контроллера и USB 2.0 периферии.

Шина USB разрабатывалась для обеспечения механизма взаимодействия компьютерных и телефонных систем, однако вскоре члены комитета разработки поняли, что USB может удовлетворить потребности многих приложения и все сферы компьютерной телефонии.

Разработчики шины ориентировались на создание интерфейса, обладающего следующими свойствами:

легко реализуемое расширение периферии ПК;

дешевое решение, позволяющее передавать данные с высокой скоростью;

гибкость протокола смешанной передачи изохронных данных и асинхронных сообщений;

интеграция с выпускаемыми устройствами;

охват всевозможных конфигураций и конструкций ПК;

обеспечение стандартного интерфейса, способного быстро завоевать рынок;

создание новых классов устройств, расширяющих ПК.

Практически все поставленные задачи были решены, и весной 1997 года стали появляться компьютеры, оборудованные разъемами для подключения USB-устройств. Иконкой, официально обозначается шина USB, как в Windows, так и на USB-разъемах.

В феврале 2004 года корпорация Intel совместно с Agere, Systems, HP, Microsoft Corporation, NEC, Philips Semiconductors и Samsung Electronics объявила о создании группы продвижения беспроводного USB (Wireless USB Promoter Group). Ее задача - продвижение высокоскоростной технологии беспроводного подключения внешних устройств Wireless USB на скорости 480 Мбит/с с дальностью действия при низком энергопотреблении до 10 метров.

2. Сравнение USB с другими интерфейсами

В настоящее время достойной альтернативы USB не существует (кроме, пожалуй, изначального конкурента - Fire Wire, но у этой шины принципиально другая система соединения). Интерфейсы, сравнимые с USB по скорости обмена, требуют специальных преобразователей (например, RS-485). Интерфейсы, не требующие дополнительных элементов, либо низкоскоростные, либо узконаправленные (RS-232, LPT, MIDI и др.). Кроме того, к несомненным плюсам USB относятся организация помехозащищенности на уровне аппаратного и шинного протоколов и «встроенная» поддержка Plug and Play, а также отсутствие дополнительных элементов для подключения устройств (как, например, терминаторы для SCSI-интерфейса). Единственным минусом можно считать довольно короткое кабельное соединение, но следует помнить, что шина USB разрабатывалась как шина для домашних устройств и дальние соединения не закладывались в нее изначально.

3. Архитектура USB-шины

.1 Общая архитектура

Для шины USB выбран последовательный формат пересылки данных, обеспечивающий ее наименьшую стоимость и наибольшую гибкость. Тактирующий сигнал и данные кодируются вместе и передаются как единый сигнал. В результате нет никаких ограничений в отношении тактовой частоты или расстояний, связанных со сдвигом данных, благодаря чему становится возможной высокая пропускная способность соединений с высокой тактовой частотой.

Для того чтобы к шине USB можно было одновременно подключать большое количество устройств, удаляемых и подсоединяемых в любое время, эта шина имеет древовидную структуру. Компьютер в такой конфигурации является управляющим устройством и называется хостом. В узлах дерева располагаются устройства, называемые хабами и действующие как промежуточные управляющие компоненты между хостом и устройствами ввода-вывода. Компьютер имеет встроенный хаб, называемый корневым хабом, который соединяет все дерево с хост-компьютером. «Листьями» дерева являются устройства ввода-вывода (клавиатура, динамики, соединение с Интернетом, цифровой телевизор и т.п.), в терминологии USB называемые функциями.

3.2 Составляющие USB

Шина USB состоит из следующих элементов.

Хост-контроллер (Host Controller) - это главный контроллер, который входит в состав системного блока компьютера и управляет работой всех устройств на шине USB. Для краткости его называют просто «хост». На шине USB допускается наличие только одного хоста. Системный блок персонального компьютера содержит один или несколько хостов, каждый из которых управляет отдельной шиной USB.

Устройство (Device) может представлять собой хаб, функцию или их комбинацию (Compound Device).

Порт (Port) - точка подключения.

Хаб (Hub, другое название - концентратор) - устройство, которое обеспечивает дополнительные порты на шине USB. Другими словами, хаб преобразует один порт (восходящий порт, Upstream Port) во множество портов (нисходящие порты, Downstream Ports). Архитектура допускает соединение нескольких хабов (не более 5). Хаб распознает подключение и отключение устройств к портам и может управлять подачей питания на порты. Каждый из портов может быть разрешен или запрещен и сконфигурирован на полную или ограниченную скорость обмена. Хаб обеспечивает изоляцию сегментов с низкой скоростью от высокоскоростных. Хаб может ограничивать ток, потребляемый каждым портом.

Корневой хаб (Root Hub) - это хаб, входящий в состав хоста.

Функция (Function) - это периферийное устройство (ПУ) или отдельный блок периферийного устройства, способный передавать и принимать информацию по шине USB. Каждая функция предоставляет конфигурационную информацию, описывающую возможности ПУ и требования к ресурсам. Перед использованием функция должна быть сконфигурирована хостом - ей должна быть выделена полоса в канале и выбраны опции конфигурации.

3.3 Свойства составляющих

Свойства USB-устройств

Спецификация USB жестко определяет набор свойств, которые должно поддерживать любое USB-устройство:

адресация - устройство должно отзываться на назначенный ему уникальный адрес и только на него;

конфигурирование - после включения или сброса устройство должно предоставлять нулевой адрес для возможности конфигурирования его портов;

передача данных - устройство имеет набор конечных точек для обмена данными с хостом. Для конечных точек, допускающих разные типы передач, после конфигурирования доступен только один из них;

управление энергопотреблением - любое устройство при подключении не должно потреблять от шины ток, превышающий 100 мА. Если хаб не может обеспечить устройству заявленный ток, устройство не будет использоваться;

приостановка - устройство USB должно поддерживать приостановку (Suspended Mode), при которой его потребляемый ток не превышает 500 мкА. Устройство должно автоматически приостанавливаться при прекращении активности шины;

удаленное пробуждение - возможность удаленного пробуждения (Remote Wakeup) позволяет приостановленному устройству подать сигнал хосту, который тоже может находиться в приостановленном состоянии.

Свойства хабов

Хаб выполняет коммутацию сигналов и выдачу питающего напряжения, а также отслеживает состояние подключенных к нему устройств, уведомляя хост об изменениях. Хаб состоит из двух частей - контроллера (Hub Controller) и повторителя (Hub Repeater).

Контроллер содержит регистры для взаимодействия с хостом. Доступ к регистрам осуществляется по специфическим командам обращения к хабу. Команды позволяют конфигурировать хаб, управлять нисходящими портами и опрашивать их состояние.

Повторитель представляет собой управляемый ключ, соединяющий выходной порт со входным. Он имеет средства сброса и приостановки передачи сигналов.

Нисходящие порты хабов могут находиться в следующих состояниях:

Питание отключено (Powered off) - на порт не подается питание (возможно только для хабов, коммутирующих питание). Выходные буферы переводятся в высокоимпедансное состояние, входные сигналы игнорируются;

Отсоединен (Disconnected) - порт не передает сигналы ни в одном направлении, но способен обнаружить подключение устройства;

Запрещен (Disabled) - порт передает только сигнал сброса (по команде контроллера), сигналы от порта (кроме обнаружения отключения) не воспринимаются;

Разрешен (Enabled) - порт передает сигналы в обоих направлениях. По команде контроллера или по обнаружении ошибки кадра порт переходит в состояние «Запрещен», а по обнаружении отключения - в состояние «Отсоединен»;

Приостановлен (Suspended) - порт передает сигнал перевода в состояние «спящий режим». Если хаб находится в активном состоянии, сигналы через порт не пропускаются ни в одном направлении.

Состояние каждого порта идентифицируется контроллером хаба с помощью отдельных регистров. Имеется общий регистр, биты которого отражают факт изменения состояния каждого порта. Это позволяет хосту быстро узнать состояние хаба, а в случае обнаружения изменений специальными транзакциями уточнить состояние.

Свойства хоста

Хост имеет следующие обязанности:

обнаружение подключения и отключения устройств USB;

управление потоками данных;

сбор статистики;

обеспечение энергосбережения подключенными ПУ.

Системное ПО контроллера управляет взаимодействием между устройствами и их ПО, функционирующим на хост-компьютере, для согласования:

нумерации и конфигурирования устройств;

изохронных передач данных;

управления энергопотреблением;

информации об управлении устройствами и шиной.

4. Аппаратное обеспечение

.1 Кабели

Спецификация USB предъявляет несколько требований к кабельному соединению:

предотвращение ошибки соединения разъемов;

простота кабельного соединения;

возможность подключения устройств, имеющих питание от шины и возможность подключения устройств, имеющих внешнее питание.

Соединительный кабель, используемый для подключения устройств с интерфейсом USB, представляет собой четырехжильный кабель в экранирующей оплетке и защитным покрытием из полихлорвинила. Два проводника предназначены для передачи данных, один - для источника питания (+5 В) и один - для «земли»

Спецификация USB 2.0 определяет три возможных типа используемых кабелей:

стандартный съемный кабель;

высокоскоростной (полноскоростной) несъемный кабель;

низкоскоростной несъемный кабель.

Стандартный съемный кабель служит для соединения хоста или хаба с устройством. С одной стороны он заканчивается разъемом типа «А» для подключения к хосту или хабу, а с другой - разъемом типа «В» или «mini-B» для подключения к устройству. Оба разъема маркируются логотипом USВ.

Несъемный кабель заканчивается с одной стороны разъемом типа «А» (с маркировкой) для подключения к хосту или хабу, а с другой стороны жестко присоединен к устройству, т.е. имеет всего один разъем.

Высокоскоростной кабель имеет импеданс 90+15% Ом и полную задержку распространения сигнала 26 нс. Кабель обязательно должен иметь витую пару из сигнальных проводников и экранирующую оплетку. Такой кабель можно использовать и для низкоскоростного соединения.

Низкоскоростной кабель предназначен для работы на скоростях до 1,5 Мбайт/с. В связи с этим к кабелю предъявляются меньшие требования: низкоскоростной кабель не имеет витой пары из сигнальных проводников и экранирующей оплетки. Он должен иметь емкость в диапазоне 200-450 пФ и задержку на распространение сигнала не более 18 нс.

Длина соединительного кабеля определяется импедансом и задержкой распространения сигнала. В среднем длина составляет три-пять метров, но может быть и до десяти. Определяющим фактором является качество изготовления и используемый материал.

4.2 Разъемы

Для предотвращения ошибочных соединений USB использует USB-кабели с различными разъемами. Согласно спецификации, устройства, работающие с шиной USВ, могут использовать три типа разъемов: «А», «В» и «Mini-B». Разъемы «А» обозначают принадлежность к «ведущему» устройству, они используются в хостах и хабах. Их всегда можно встретить, например, на современных материнских платах персональных компьютеров. Разъемы «В» используют «ведомые» устройства. Тип разъемов «mini-В» появился в спецификации в 2000 году с введением стандарта USB 2.0. Этот разъем позиционируется для применения в малогабаритных мобильных устройствах, например, в сотовых телефонах, когда габариты самого устройства соизмеримы с размерами разъема.

Конструктивно разъемы задуманы так, что сначала происходит соединение шины питания, потом шины данных.

Спецификация USB определяет стандартную цветовую гамму для проводников внутри USB-кабеля, что значительно облегчает идентификацию проводов при применении кабелей от разных производителей.

Кабель также имеет линии VBus и GND для передачи питающего напряжения 5 В к устройствам. Сечение проводников выбирается в соответствии с длиной сегмента для обеспечения гарантированного уровня сигнала и питающего напряжения.

5. Принципы передачи данных

Информация, пересылаемая через соединения USВ, организуется в пакеты, каждый из которых включает один или несколько байтов данных. В интерфейсе USB испольуется несколько разновидностей пакетов:

пакет-признак (token paket) описывает тип и направление передачи данных, адрес устройства и порядковый номер конечной точки (КТ - адресуемая часть USB-устройства); пакет-признаки бывают нескольких типов: IN, OUT, SOF, SETUP;

пакет с данными (data packet) содержит передаваемые данные;

пакет согласования (handshake packet) предназначен для сообщения о результатах пересылки данных; пакеты согасования бывают нескольких типов: ACK, NAK, STALL.

Таким образом, каждая транзакция состоит из трех фаз: фаза передачи пакета-признака, фаза передачи данных и фаза согласования.

В интерфейсе USB используются несколько типов пересылок информации:

Управляющая пересылка (control transfer) используется для конфигурации устройства, а также для других специфических для конкретного устройства целей. Управляющие пересылки содержат две стадии: Setup-стадия и статусная стадия. Между ними может располагаться стадия передачи данных. Setup-стадия используется для выполнения SETUP-транзакции, в процессе которой пересылается информация в управляющую КТ функции. SETUP-транзакция содержит SETUP-пакет, пакет с данными и пакет согласования.

Если пакет с данными получен успешно, то она отсылает хосту ACK-пакет. Иначе транзакция завершается.

Потоковая пересылка (bulk transfer) используется для передачи относительно большого объема информации. Потоковые пересылки характеризуются гарантированной безошибочной передачей данных между хостом и функцией посредством обнаружения ошибок при передаче и повторного запроса информации.

Пересылка с прерыванием (iterrupt transfer) используется для передачи небольшого объема информации, для которого важна своевременная пересылка. Имеет ограниченную длительность и повышенный приоритет относительно других типов пересылок. Пересылки с прерыванием могут содержать IN- или OUT-пересылки. Если у функции нет информации, для которой требуется прерывание, то в фазе передачи данных функция возвращает NAK-пакет. Если работа КТ с прерыванием приостановлена, то функция возвращает STALL-пакет. При необходимости прерывания функция возвращает необходимую информацию в фазе передачи данных. Если хост успешно получил данные, то он посылает ACK-пакет. В противном случае согласующий пакет хостом не посылается.

Изохронная пересылка (isochronous transfer) также называется потоковой пересылкой реального времени. Информация, передаваемая в такой пересылке, требует реального масштаба времени при ее создании, пересылке и приеме. Изохронные транзакции содержат фазу передачи признака и фазу передачи данных, но не имеют фазы согласования. Хост отсылает IN- или OUT-признак, после чего в фазе передачи данных КТ (для IN-признака) или хост (для OUT-признака) пересылает данные. Изохронные транзакции не поддерживают фазу согласования и повторные посылки данных в случае возникновения ошибок.

Пересылаемую по шине USB информацию можно разделить на две категории: управляющая информация и данные. Управляющие пакеты используются для адресации устройств при инициировании пересылки данных, а также для подтверждения факта получения правильных данных и сообщений об ошибках. Пакеты данных содержат входные и выходные данные, которыми хост обменивается с устройством, и некоторую другую информацию.

Каждый пакет состоит из одного или нескольких полей, содержащих разные типы информации. Первое поле любого пакета называется идентификатором и обозначается как PID. Оно идентифицирует тип пакета. В этом поле четыре бита информации, которые передаются дважды. В первый раз пересылаются их реальные значения, а во второй - дополненные. Это позволяет устройству-получателю проверить достоверность полученного байта PID.

Механизм передачи данных является асинхронным и блочным. Блок передаваемых данных называется USB-фреймом или USB-кадром (состоит из пакетов) и передается за фиксированный временной интервал. Оперирование командами и блоками данных реализуется при помощи логической абстракции, называемой каналом. Внешнее устройство также делится на логические абстракции, называемые конечными точками. Таким образом, канал является логической связкой между хост-контроллером и конечной точкой внешнего устройства. Канал можно сравнить с открытым файлом.

Для передачи команд (и данных, входящих в состав команд) используется канал по умолчанию, а для передачи данных открываются либо потоковые каналы, либо каналы сообщения.

Для шины USB настоящего механизма прерываний (как, например, для последовательного порта) не существует. Вместо этого хост-контроллер опрашивает подключенные устройства на предмет наличия данных о прерывании. Опрос происходит в фиксированные интервалы времени, обычно каждые 1-32 мс.

С точки зрения драйвера, возможности работы с прерываниями фактически определяются хост-контроллером, который и обеспечивает поддержку физической реализации USB-интерфейса.

6. USB-устройства

Благодаря своей универсальности и способности эффективно передавать разнородный трафик, шина USB применяется для подключения к PC самых разнообразных устройств. Она призвана заменить традиционные порты PC - СОМ и LPT, а также порты игрового адаптера и интерфейса MIDI.

Обычно USB-устройство представляет собой USB-функцию с портом для подключения. Типичными примерами функций являются:

указатели: мышь, планшет, световое перо;

устройства ввода: клавиатура, сканер;

устройства вывода: принтер, звуковые колонки, монитор;

телефонный адаптер ISDN;

флеш-диски.

Часто USB-устройство имеет встроенный хаб, позволяющий подключать к нему другие устройства.

6.1 Мышь и клавиатура

Подключение USB-мыши может быть оправдано при необходимости освободить последовательный порт. Однако для мыши остается еще порт PS/2, поэтому USB-мышь не особенно необходима, за исключением возможности конфигурирования частоты опроса, что оценят любители компьютерных игр, или в отсутствии других портов (в ноутбуках).

Использование USB-клавиатуры интересно только возможностью подключения USB-мыши прямо к клавиатуре, а также экономией системных ресурсов.

6.2 Мониторы

В отличие от USB-колонок, не требующих звуковой карты, USB-монитор все же требует графический адаптер (видеокарту). «USB» в названии означает наличие USB-портов, позволяющих подключать USB-устройства непосредственно к монитору, а также возможность программного конфигурирования настроек монитора по USB-интерфейсу.

6.3 Переходники USB-to-COM и USB-to-LPT

Конвертеры USB-to-COM и USB-to-LPT незаменимы в тех случаях, когда последовательные и параллельные порты в системе уже заняты (или недееспособны). Эти устройства позволяют подключать к USB-порту устройства с последовательным (мышь, модем) и параллельным (принтер, сканер) интерфейсами. Переходник USB-to-COM будет также полезен пользователям ноутбуков, т.к. в них имеется всего один последовательный порт.

6.4 Сканеры

Основной интерес USB-сканера заключается в отсутствии внешнего питания. Скорость работы таких сканеров ничем не отличается от обычных, т.к. основной определяющей является не скорость передачи данных, а скорость движения сканирующей головки.

6.5 Модемы

Такие модемы не требуют внешнего питания и работают полностью от шины. С одной стороны, это позволило значительно уменьшить размеры самих модемов, но с другой, такие модемы имеют все достоинства и недостатки программных модемов (soft modem). На многих USB-модемах производители уменьшили число индикаторов состояния или используют программное отображение, что не очень, удобно.

6.6 Звуковые колонки

колонки не требуют звуковой карты, а преобразование сигнала в аналоговый происходит в самих колонках через встроенный аналого-цифровой преобразователь.

Следует отличать понятия «USB-колонки» от «колонки с питанием от USB». Второй вариант представляет собой обычные колонки, требующие звуковой карты, но без отдельного блока питания. Их можно отличить по дополнительному разъему к звуковой карте. При подключении к шине такие колонки даже не опознаются системой как новое устройство.

Качество звука, получаемое при использовании USB-колонок, значительно выше, чем с применением обычных колонок совместно с большинством звуковых карт. Единственное ограничение - компьютер должен иметь достаточную производительность для обеспечения непрерывного потока данных на колонки, иначе любое движение мыши способно привести к исчезновению звука.

Поток данных, передаваемых на USB-колонки, довольно большой, что создает заметный трафик от компьютера к колонкам. По этой причине рекомендуется подключение колонок непосредственно к компьютеру либо к ближайшему хабу.

6.7 Флеш-диски

Флеш-диски с USB-интерфейсом обладают значительными преимуществами:

флеш-диск можно подключить к любому современному компьютеру без выключения;

диск может быть загрузочным;

скорость записи довольно велика, хотя и меньше, чем у жесткого диска;

отсутствуют сбойные секторы;

ударостойкость около 1000 G (значительно больше любого современного жесткого диска);

время хранения данных - не менее 10 лет;

число циклов записи - не менее миллиона;

объем диска достаточно большой.

С USB-диска можно запускать программы, редактировать файлы, не прибегая к помощи жесткого диска компьютера. Это значительно облегчает синхронизацию файлов между компьютерами, например, домашним и рабочим.

Согласно спецификации USB к одному порту можно подключить 127 устройств с помощью соответствующего хаба. Однако на практике число флеш-дисков ограничено числом свободных букв дисков (26 букв минус А, В и С, т.е. максимум 23 диска).

Флеш-диски легко форматируются средствами Windows. При этом пользователь может сам выбирать тип файловой системы (FAT или FAT32).

6.8 Хабы

Хабы не являются как таковыми USB-устройствами. Их задача - преобразовывать один USB-порт в несколько портов. Модели классифицируются по числу предоставляемых портов, поддерживаемым стандартам и типу питания.

Хабы могут быть внутренние (вставляемые в PIC-шину) и внешние. Питание внешних хабов обычно внешнее, однако бывают и исключения.

6.9 Измерительная техника

Скорость передачи данных USB-канала позволяет использовать USB-шину для подключения измерительных приборов, таких как цифровые осциллографы, логические анализаторы, генераторы сигналов и т.п. В таких устройствах USB используется как для передачи данных в компьютер для их последующей обработки и отображения, так и для задания пара метров приборов.

6.10 Экзотические устройства

В последнее время на рынке компьютерной продукции стали появляться и довольно экзотические USB-устройства. Список устройств, в общем-то, не относящихся к компьютерной периферии, довольно большой. Интересны, например, USB-фонарик, позволяющий осветить клавиатуру или рабочее место, или USB-вентилятор. Среди экзотических устройств можно найти USB-подогреватель для чашки, USB-грелку и даже USB-зубную щетку.

7. Установка и конфигурирование USB-устройств

Спецификация USB была разработана с непосредственной поддержкой спецификации Plug and Play. Каждое устройство при подключении к шине USB сигнализирует о своем существовании и сообщает идентификатор производителя и идентификатор устройства. Эти идентификаторы являются определяющей информацией при выборе загружаемого драйвера, информация о котором ищется в реестре. Если подходящего драйвера в реестре не обнаружено, производится процедура установки нового устройства (драйвера). Спецификация Plug and Play предполагает прозрачное подключение и автоматическое конфигурирование устройств. Вмешательство пользователя требуется в том случае, когда система либо не смогла найти нужный драйвер и запрашивает его местоположение у пользователя, либо системе не удалось корректно распределить системные ресурсы.

Для подключения устройств к шине не требуется дополнительных действий (как, например, установка перемычек при подключении жестких дисков к IDE-интерфейсу), а возможность неправильного подключения исключается разными разъемами. Многие производители предоставляют свои драйверы для устройств.

Так как обмен данными по шине USB идет только между компьютером и устройствами, то при подключении устройств следует учитывать потребляемую ими полосу пропускания. Устройства с большими объемами приема и / или передачи данных должны подключаться либо к самому компьютеру, либо к ближайшему свободному узлу.

С другой стороны, при подключении устройств следует учитывать и поддерживаемые ими стандарты USB. Устройства и ПО, критичные к полосе пропускания шины, в неправильной конфигурации работать откажутся и потребуют переключений. Если же хост-контроллер старый, то все достоинства USB 2.0 окажутся недоступны пользователю. В этом случае придется менять хост-контроллер, т.е. системную плату. Контроллер и хабы USВ 2.0 позволяют повысить суммарную пропускную способность шины и для старых устройств. Если устройства FS подключать к разным портам хабов USB 2.0 (включая и корневой), то для них суммарная пропускная способность возрастет по сравнению с 12 Мбит/с во столько раз, сколько используется портов высокоскоростных хабов.

Заключение

Универсальная последовательная шина USB призвана заменить такие устаревшие интерфейсы, как RS-232 (COM-порт) и параллельный интерфейс IEEE 1284 (LPT-порт), то есть заменить последовательные и параллельные, клавиатурные и мышиные порты - все устройства подключаются к одному разъему, допускающему установку многочисленных устройств с легкостью технологии Plug & Play. Технология Plug & Play позволяет производить «горячую» замену без необходимости выключения и перезагрузки компьютера. После физического подсоединения устройства правильно опознаются и автоматически конфигурируются: USB самостоятельно определяет, что именно подключили к компьютеру, какой драйвер и ресурсы понадобятся устройству, после чего все это выделяет без вмешательства пользователя. Для адекватной работы шины необходима операционная система, которая корректно с ней работает.

К шине USB можно одновременно подключить до 127 устройств: мониторы, принтеры, сканеры, клавиатуры и т.д. Каждое устройство, подключенное на первом уровне, может работать в качестве концентратора-то есть к нему, при наличии соответствующих разъемов, могут подключаться еще несколько устройств. Обмен по интерфейсу - пакетный, скорость обмена - от 1,5 Мбит/с до 480 Мбит/с.

Кроме этого, питание маломощных устройств подается с самой шины. Попутно решается историческая проблема нехватки ресурсов на внутренних шинах IBM PC совместимого компьютера - контроллер USB занимает только одно прерывание независимо от количества подключенных к шине устройств.

Конструкция разъемов для USB рассчитана на многократное сочленение / расчленение.

Все эти возможности и достоинства интерфейса USB сыграли решающую роль в том, что данная технология получила такую популярность. Универсальность соединения по типу USB привела к тому, что настоящее время интерфейс USB распространился повсеместно, вытеснив устаревшие порты на компьютерах.

Однако пропускной способности USB 2.0 перестало хватать для многих современных устройств. Новый стандарт USB 3.0 обеспечивает увеличение пропускной способности, а также дает и другие новшества. На данный момент оборудования и устройства с поддержкой USB 3.0 только начинают внедрять. Однако, согласно данным исследовательской компании InStart, новый стандарт к 2013 году будет занимать 25% рынка.

Случайные статьи

Вверх